skip to main content


Search for: All records

Creators/Authors contains: "Scott, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 27, 2025
  2. Abstract Background

    Understanding pre-1850s fire history and its effect on forest structure can provide insights useful for fire managers in developing plans to moderate fire hazards in the face of forecasted climate change. While climate clearly plays a substantial role in California wildfires, traditional use of fire by Indigenous people also affected fire history and forest structure in the Sierra Nevada. Disentangling the effects of human versus climatically-induced fire on Sierran forests from paleoecological records has historically proved challenging, but here we use pollen-based forest structure reconstructions and comparative paleoclimatic-vegetation response modeling to identify periods of human impact over the last 1300 years at Markwood Meadow, Sierra National Forest.

    Results

    We find strong evidence for anthropogenic fires at Markwood Meadow ca. 1550 – 1750 C.E., contemporaneous with archaeological evidence for fundamental shifts in Indigenous lifeways. When we compare our findings to five other paleoecological sites in the central and southern Sierra Nevada, we find evidence for contemporaneous anthropogenic effects on forest structure across a broad swath of cismontane central California. This is significant because it implies that late 19th and early twentieth century forest structure – the structure that land managers most often seek to emulate – was in part the result anthropogenic fire and precolonial resource management.

    Conclusion

    We consequently suggest that modern management strategies consider (1) further incorporating traditional ecological knowledge fire practices in consultation with local tribal groups, and (2) using pollen-based reconstructions to track how forest composition compares to pre-1850 C.E. conditions rather than the novel forest states encountered in the late 20th and early twenty-first centuries. These strategies could help mitigate the effects of forecast climate change and associated megafires on forests and on socio-ecological systems in a more comprehensive manner.

     
    more » « less
  3. Abstract

    Fluoride is an environmental toxin prevalent in water, soil, and air. A fluoride transporter called Fluoride EXporter (FEX) has been discovered across all domains of life, including bacteria, single cell eukaryotes, and all plants, that is required for fluoride tolerance. How FEX functions to protect multicellular plants is unknown. In order to distinguish between different models, the dynamic movement of fluoride in wildtype (WT) andfexmutant plants was monitored using [18F]fluoride with positron emission tomography. Significant differences were observed in the washout behavior following initial fluoride uptake between plants with and without a functioning FEX. [18F]Fluoride traveled quickly up the floral stem and into terminal tissues in WT plants. In contrast, the fluoride did not move out of the lower regions of the stem in mutant plants resulting in clearance rates near zero. The roots were not the primary locus of FEX action, nor did FEX direct fluoride to a specific tissue. Fluoride efflux by WT plants was saturated at high fluoride concentrations resulting in a pattern like thefexmutant. The kinetics of fluoride movement suggested that FEX mediates a fluoride transport mechanism throughout the plant where each individual cell benefits from FEX expression.

     
    more » « less
  4. Abstract

    Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we have little understanding of how other environmental signals, particularly evaporative demand driven by vapor pressure deficit (VPD) influences the kinetics of this response. In angiosperms, and some fern species from the family Marsileaceae, a mechanical interaction between the guard cells and the epidermal cells determines the aperture of the pore. Here, we examine whether this mechanical interaction influences the speed of stomatal opening in the light. To test this, we investigated the speed of stomatal opening in response to light across a range of VPDs in seven plant species spanning the evolutionary diversity of guard cell and epidermal cell mechanical interactions. We found that stomatal opening speed is a function of evaporative demand in angiosperm species and Marsilea, which have guard cell and epidermal cell mechanical interactions. Stomatal opening speeds did not change across a range of VPD in species of gymnosperm and fern, which do not have guard cell mechanical interactions with the epidermis. We find that guard cell and epidermal cell mechanical interactions may play a key role in regulating stomatal responsiveness to light. These results provide valuable insight into the adaptive relevance of mechanical advantage.

     
    more » « less
  5. Abstract

    Phytoplankton respond to physical and hydrographic forcing on time and space scales up to and including those relevant to climate change. Quantifying changes in phytoplankton communities over these scales is essential for predicting ocean food resources, occurrences of harmful algal blooms, and carbon and other elemental cycles, among other predictions. However, one of the best tools for quantifying phytoplankton communities across relevant time and space scales, ocean color sensors, is constrained by its own spectral capabilities and availability of adequately vetted and relevant optical models. To address this later shortcoming, greater than fifty strains of phytoplankton, from a range of taxonomic lineages, geographic locations, and time in culture, alone and in mixtures, were grown to exponential and/or stationary phase for determination of hyperspectral UV-VIS absorption coefficients, multi-angle and multi-spectral backscatter coefficients, volume scattering functions, particle size distributions, pigment content, and fluorescence. The aim of this publication is to share these measurements to expedite their utilization in the development of new optical models for the next generation of ocean color satellites.

     
    more » « less
  6. Rationale

    Free fatty acids and lipid classes containing fatty acid esters are major components of lipidome. In the absence of a chemical derivatization step, FA anions do not yield all of the structural information that may be of interest under commonly used collision‐induced dissociation (CID) conditions. A line of work that avoids condensed‐phase derivatization takes advantage of gas‐phase ion/ion chemistry to charge invert FA anions to an ion type that provides the structural information of interest using conventional CID. This work was motivated by the potential for significant improvement in overall efficiency for obtaining FA chain structural information.

    Methods

    A hybrid triple quadrupole/linear ion‐trap tandem mass spectrometer that has been modified to enable the execution of ion/ion reaction experiments was used to evaluate the use of 4,4′,4″‐tri‐tert‐butyl‐2,2′:6′,2″‐terpyridine (ttb‐Terpy) as the ligand in divalent magnesium complexes for charge inversion of FA anions.

    Results

    Mg(ttb‐Terpy)22+complexes provide significantly improved efficiency in producing structurally informative products from FA ions relative to Mg(Terpy)22+complexes, as demonstrated for straight‐chain FAs, branched‐chain FAs, unsaturated FAs, and cyclopropane‐containing FAs. It was discovered that most of the structurally informative fragmentation from [FA‐H + Mg(ttb‐Terpy)]+results from the loss of a methyl radical from the ligand followed by radical‐directed dissociation (RDD), which stands in contrast to the charge‐remote fragmentation (CRF) believed to be operative with the [FA‐H + Mg(Terpy)]+ions.

    Conclusions

    This work demonstrates that a large fraction of product ions from the CID of ions of the form [FA‐H + Mg(ttb‐Terpy)]+are derived from RDD of the FA backbone, with a very minor fraction arising from structurally uninformative dissociation channels. This ligand provides an alternative to previously used ligands for the structural characterization of FAs via CRF.

     
    more » « less
  7. Abstract Background Traditionally, doctoral student education in the biomedical sciences relies on didactic coursework to build a foundation of scientific knowledge and an apprenticeship model of training in the laboratory of an established investigator. Recent recommendations for revision of graduate training include the utilization of graduate student competencies to assess progress and the introduction of novel curricula focused on development of skills, rather than accumulation of facts. Evidence demonstrates that active learning approaches are effective. Several facets of active learning are components of problem-based learning (PBL), which is a teaching modality where student learning is self-directed toward solving problems in a relevant context. These concepts were combined and incorporated in creating a new introductory graduate course designed to develop scientific skills (student competencies) in matriculating doctoral students using a PBL format. Methods Evaluation of course effectiveness was measured using the principals of the Kirkpatrick Four Level Model of Evaluation. At the end of each course offering, students completed evaluation surveys on the course and instructors to assess their perceptions of training effectiveness. Pre- and post-tests assessing students’ proficiency in experimental design were used to measure student learning. Results The analysis of the outcomes of the course suggests the training is effective in improving experimental design. The course was well received by the students as measured by student evaluations (Kirkpatrick Model Level 1). Improved scores on post-tests indicate that the students learned from the experience (Kirkpatrick Model Level 2). A template is provided for the implementation of similar courses at other institutions. Conclusions This problem-based learning course appears effective in training newly matriculated graduate students in the required skills for designing experiments to test specific hypotheses, enhancing student preparation prior to initiation of their dissertation research. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  8. Abstract

    The evolution of wind-generated near-inertial waves (NIWs) is known to be influenced by the mesoscale eddy field, yet it remains a challenge to disentangle the effects of this interaction in observations. Here, the model of Young and Ben Jelloul (YBJ), which describes NIW evolution in the presence of slowly evolving mesoscale eddies, is compared to observations from a mooring array in the northeast Atlantic Ocean. The model captures the evolution of both the observed NIW amplitude and phase much more accurately than a slab mixed layer model. The YBJ model allows for the identification of specific physical processes that drive the observed evolution. It reveals that differences in the NIW amplitude across the mooring array are caused by the refractive concentration of NIWs into anticyclones. Advection and wave dispersion also make important contributions to the observed wave evolution. Stimulated generation, a process by which mesoscale kinetic energy acts as a source of NIW potential energy, is estimated to be 20μW m−2in the region of the mooring array, which is two orders of magnitude smaller than the global average input to mesoscale kinetic energy and likely not an important contribution to the mesoscale kinetic energy budget in this region. Overall, the results show that the YBJ model is a quantitatively useful tool to interpret observations of NIWs.

     
    more » « less
  9. In hybrid zones, whether barrier loci experience selection mostly independently or as a unit depends on the ratio of selection to recombination as captured by the coupling coefficient. Theory predicts a sharper transition between an uncoupled and coupled system when more loci affect hybrid fitness. However, the extent of coupling in hybrid zones has rarely been quantified. Here, we use simulations to characterize the relationship between the coupling coefficient and variance in clines across genetic loci. We then re-analyze 25 hybrid zone data sets and find that cline variances and estimated coupling coefficients form a smooth continuum from high variance and weak coupling to low variance and strong coupling. Our results are consistent with low rates of hybridization and a strong genome-wide barrier to gene flow when the coupling coefficient is much greater than 1, but also suggest that this boundary might be approached gradually and at a near constant rate over time. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  10. Abstract

    The phytohormone abscisic acid (ABA) plays a major role in closing the stomata of angiosperms. However, recent reports of some angiosperm species having a peaking-type ABA dynamic, in which under extreme drought ABA levels decline to pre-stressed levels, raises the possibility that passive stomatal closure by leaf water status alone can occur in species from this lineage. To test this hypothesis, we conducted instantaneous rehydration experiments in the peaking-type species Umbellularia californica through a long-term drought, in which ABA levels declined to pre-stress levels, yet stomata remain closed. We found that when ABA levels were lowest during extreme drought, stomata reopen rapidly to maximum rates of gas exchange on instantaneous rehydration, suggesting that the stomata of U. californica were passively closed by leaf water status alone. This contrasts with leaves early in drought, in which ABA levels were highest and stomata did not reopen on instantaneous rehydration. The transition from ABA-driven stomatal closure to passively driven stomatal closure as drought progresses in this species occurs at very low water potentials facilitated by highly embolism-resistant xylem. These results have important implications for understanding stomatal control during drought in angiosperms.

     
    more » « less